

Testing in python tutorial

Prepared by Houndole Lesly & Lucien Zuber

Reviewed by Hunacek Daniel & Widmer Antoine

Date 03.08.2017

2

PROJECT INFORMATION

 Project name Hotmaps
 Grant agreement number

723677

 Project duration 2016-2020
 Project coordinator Dr. Lukas Kranzl

TU Wien - Vienna University of Technology
Energy Economics Group – EEG
Gusshausstrasse 25-29/370-3
A-1040 Wien / Vienna, Austria
Phone: +43 1 58801 370351
E-Mail: kranzl@eeg.tuwien.ac.at

Legal notice

The sole responsibility for the contents of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the INEA nor the European Commission is responsible
for any use that may be made of the information contained therein.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the written permission of the publisher. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. The quotation of
those designations in whatever way does not imply the conclusion that the use of those designations is
legal without the consent of the owner of the trademark.

mailto:kranzl@eeg.tuwien.ac.at

3

Legal notice .. 2

Introduction Error! Bookmark not

defined.

1. unit Test 5

1.1 Test driven development 6

1.2 Introduction to unit test 7

1.3 Unit test with python 7

1.3.1 Basic test structure 7

1.3.2 Running unit tests 8

1.3.3 Asserting Truth …………………………………9

2. Continuous Integration 16

2.1 Introduction 17

Conclusions ... Error! Bookmark not defined.

References ... Error! Bookmark not defined.

Annexes ... Error! Bookmark not defined.

4

Introduction

The purpose of this tutorial is first to show how to use unit test in Hotmaps project. Unit test
will answer some important questions in the software development process:

Is this going to work if I insert X?

Does still X return the same results now that I have implemented Y?

As you can see unit test is important to maintain, an application, adds new features in an
application, avoiding regression also unit test is just the first stage of the test pyramid

In the figure above it is represented the ideal test pyramid. This pyramid can be divided into
five different stages of testing:

 Unit tests

 Component tests

 Integration test

 API test

 Functional test

5

In this document, we will go throughout unit test and integration test; first we will explain the
goal of the test then we will describe how does it work and how you can reproduce it. For
demonstration, we will use Python programming language to describe unit test.

Python is a high-level, interpreted, dynamic type system and automatic memory
management and supports multiple programming paradigms, including object-oriented,
imperative, functional programming, and procedural styles. It has a large and comprehensive
standard library.

1.Unit test

1.1 Test driven development

Unit test is a component of test-driven development (TDD), a pragmatic methodology that

takes a meticulous approach to build a product by means of continual testing and revision.

Test-driven development requires that developers first write failing unit tests. Then they

write code and refactor the application until the test passes. TDD typically results in an

explicit and predictable code base.

The TDD development is of developing a test for each feature of the application. In TDD there

are a development process rules to follow:

 Add a test.

 Run all tests and see if the new one fails.

 Write some code.

 Run tests and Refactor code.

 Repeat.

6

Using TDD gives a lot of benefit like the following:

 Much less debug time.

 Code proven to meet requirements

 Tests become safety.

 Near zero defects

 Shorter development cycles

7

1.2 Introduction to unit Test

Unit test is a software development process in which features parts of an application, called
units, are individually and independently tested for proper operation. Unit test can be done
manually but is often automated.

Unit test involves only those characteristics that are vital to the performance of the unit
under test. This encourages developers to modify the source code without immediate
concerns about how such changes might affect the functioning of other units or the program.
Once all the units in a program have been found to be working in the most efficient and
error-free manner possible, larger components of the program can be evaluated by means of
integration testing.

The great benefit to unit testing is that the earlier a problem is identified, the fewer
compound errors occur. A compound error is one that doesn't seem to break anything at
first, but eventually conflicts with something down the line and results in a problem.

Let’s have a look to unit test in practice.

1.3 Unit test with python

We will use pytest 3.2.0, a framework that improves Python’s unittest in order to simplify the
tests. Python's unittest, sometimes called “PyUnit”, is based on the XUnit framework design
by Kent Beck and Erich Gamma. The same pattern is used in many other languages, including
C, Perl, Java, and Smalltalk. Unittest supports fixtures, test suites, and a test runner to enable
automated testing for your code.

1.3 1 Basic Test Structure

Tests with Pytest are very simple: first, you need to manage your app’s requirement in order
to import Pytest 3.2.0.

The test itself is composed of two parts: first, you need to execute a function of your
program, and then you need to compare the result of your program with the expected
results.

def get(lst, index, default=None):

 try:

 return lst[index]

 except IndexError:

 return default

Here is a simple function, you need to give a list of object to this get, an index and a default
message, if the index is null, the default message will be given back.

8

a_list = ('apple', 'vanilla', 'chocolate')

def test_get_element():

 element = get(a_list, 0, 'nothing')

 assert element == 'apple'

In the code above, you can see a very simple test, it is composed of an expected result
(‘apple’) and a function result(element). In this case, we want to see if the first element of our
list is apple.

Finally, we use the “assert” function to compare the two results.

1.3.2 Running Tests

To run a test using pytest, you will need to run your test using py.test, with pycharm it can be
done by editing your configurations and adding a py.test build.

A successful test will give this output (you can use the “-v” option to obtain a more detailed
results)

Test Outcomes

Tests have three possible outcomes:

ok

The test give the awaited response, in our example, the two variables are the same, so the
test will pass

def test_get_element_missing():

 element = get(a_list, 1000, 'nothing')

 assert element == 'nothing'

this code will also pass, because it will display ‘nothing’

FAIL

9

The test does not pass and raises an AssertionError exception. It means that the output is not
what it was supposed to be.

def test_get_element_failure():

 element = get(a_list, 1000,'nothing')

 assert element == 'This will not work'

this code for instance won’t work since it will return ‘nothing’ and we expect it to return ‘This
will not work’

ERROR

When the test raise another error, it means that the test has not been correctly configured
and you need to fix it (or that the function has crashed to a result)

def test_get_element_failure():

 element = get(a_list, 1000

 assert element == 'This will not work'

will display

Since the query is false

1.3.3 Asserting Truth

Note that depending on what you want to obtain, you can play with conditions to alter theh
result. For instance this:

def test_get_element_failure():

 element = get(a_list, 1000)

 assert element != 'This will not work'

will pass since the element won’t be equal to ‘this will not work’

Test Fixtures

Fixtures are resources needed by a test. For instance, if you are writing several tests for the
same class, those tests all need an instance of that class to use for testing. Other test fixtures
include database connections and temporary files. PyTest includes a special hook to
configure and clean up any fixtures needed by your tests. To configure the fixtures, we use
@pytest.yield_fixture(), and we need to import pytest

10

@pytest.yield_fixture()

def a_list():

 print('Before')

 yield ('apple', 'vanilla', 'chocolate')

 print ('after')

What is defined here in yield will be called at the beginning of the function, “before” will be
called before the yield and “after” will be called at the end of the function.

We also need to mark our fixture as parameter

def test_get_element_missing(a_list):

 element = get(a_list, 1000, 'nothing')

 assert element == 'nothing'

and the result:

As we can see the code is called after the test.

11

2 Continuous integrations

2.1 introduction

Continuous integration automates the building, testing and deploying of applications. Software
projects, whether created by a single individual or entire teams, typically use continuous
integration as a hub to ensure important steps such as unit testing are automated rather than
manual processes.

When continuous integration (CI) is established as a step in a software project's development
process it can dramatically reduce deployment times by minimizing steps that require human
intervention. The only minor downside to using CI is that it takes some initial time by a
developer to set up and then there is some ongoing maintenance if a project is broken into
multiple parts, such as going from a monolith architecture to micro - services.

Unit test can be an automated step in the deployment process. Broken deployments can be
prevented by running a comprehensive test suite of unit and integration tests when
developers check in code to a source code repository. Any bugs accidentally introduced
during a check-in that are caught by the test suite are reported and prevent the deployment
from proceeding.

CI combined with unit and integration tests check that any code modifications do not break
existing tests to ensure the software works as intended.

https://www.fullstackpython.com/unit-testing.html
https://www.fullstackpython.com/integration-testing.html

12

In the above diagram, when new code is committed to a source repository there is a hook
that notifies the continuous integration server that new code needs to be built (the
continuous integration server could also pull the source code repository if a notification is not
possible).

The continuous integration server pulls the code to build and test it. If all tests pass, the
continuous integration server begins the deployment process. The new code is pulled down
to the server where the deployment is taking place. Finally, the deployment process is
completed via restarting services and related deployment activities.

There are many other ways, a continuous integration server and its deployments can be
structured. The above was just one example of a relatively simple setup.

We showed you how to get started with Jenkins. We will show you how to install and configure
plugins and run some Python unit tests.

https://qxf2.com/blog/get-started-with-jenkins/

 Contact

